Skip to main content

Photodetector

This example introduces the modeling and optoelectronic simulation of a vertical Ge-Si photodetector.


1. Overview

This example utilizes FDTD simulation to obtain the optical field distribution in the Ge absorption layer. Subsequently, the photo-induced carrier generation rate is calculated based on the optical field, which is then imported into the DDM simulation to obtain the photo current. We also provide scripts for dark current, capacitance and resistance, frequency response, and saturation power. These simulations are divided into separate scripts, and they all call a unified script for modeling and material setup, making it convenient for modifications and management.


2. Modeling

The modeling is completed by a callable function in the script file VPD00_structure.py.


2.1 Import simulation toolkit

First, import maxoptics_sdk and other packages.

[1]
import sys

# encoding: utf-8

from moapi.v3.aggregate import AggregatedUIService as Project
import maxoptics_sdk.all as mo
from maxoptics_sdk.helper import timed, with_path
import os
import time
from typing import NamedTuple
import sys
current_dir = os.path.dirname(__file__)
sys.path.extend([current_dir])
from VPD_material_Si import elec_Si_properties
from VPD_material_Ge import elec_Ge_properties

The script file VPD_material.py stores some modified electronic parameters of the materials, which are referenced to override default parameters in the modeling script.


2.2 Set general parameters

Set some general parameters before modeling. At the beginning are those that need frequent modification during testing and optimization.

[2]
# region --- 0. General Parameters ---
wavelength_center = 1.55 # um
wavelength_span = 0.1 # um
temperature = 298.15 # K
normal_length = 20 # um
Ge_SiO2_recombination_velocity = 225000 # cm/s
run_mode = "local"
simu_name = "VPD02_Id"

Wavelength, temperature, the mesh grid size and some other parameters are defined above. They will be detailed in the subsequent settings.


[3]
# --- structure geometry ---
SiO2_x_center = 0
SiO2_x_span = 100
SiO2_y_center = 0
SiO2_y_span = 20
SiO2_z_center = 0
SiO2_z_span = 10

input_wg_x_center = -42.5
input_wg_length = 5
input_wg_width = 0.5
Si_z_span = 0.22
Si_y_center = 0
taper_x_min = input_wg_x_center+input_wg_length/2
taper_length = 40
taper_width = 4

Si_slab_length = 22
Si_slab_x_center = taper_x_min+taper_length+Si_slab_length/2
Si_slab_width = 20

Ge_x_center = 10.75
Ge_x_span_bottom = 20
Ge_x_span_top = 19.5
Ge_y_span_bottom = 4
Ge_y_span_top = 3
Ge_z_span = 0.5
Ge_z_center = Si_z_span+Ge_z_span/2

anode_x_center = 10.75
anode_x_span = 19
anode_y_center = 3.7
anode_y_span_top = 2
anode_y_span_bottom = 2
anode_z_span = 1.37
anode_z_center = Si_z_span+anode_z_span/2

cathode_x_center = 10.75
cathode_x_span = 19
cathode_y_center = 0
cathode_y_span_top = 2.2
cathode_y_span_bottom = 2.2
cathode_z_span = 1
cathode_z_center = Si_z_span+Ge_z_span+cathode_z_span/2

These are geometric parameters of the structures.


[4]
# --- electrical simulation boundary ---
oe_x_min = 10
oe_x_max = 10
oe_x_mean = 0.5*(oe_x_min+oe_x_max)
oe_x_span = oe_x_max-oe_x_min

oe_y_min = 0
oe_y_max = 3.7
oe_y_mean = 0.5*(oe_y_min+oe_y_max)
oe_y_span = oe_y_max-oe_y_min

oe_z_min = -0.15
oe_z_max = 1.25
oe_z_mean = 0.5*(oe_z_min+oe_z_max)
oe_z_span = oe_z_max-oe_z_min

These are geometric parameters of the electrical simulation region.


[5]
# --- doping parameters ---
p_uniform_x_center = 10.75
p_uniform_x_span = 22.5
p_uniform_y_center = 0
p_uniform_y_span = 15
p_uniform_z_center = Si_z_span/2
p_uniform_z_span = Si_z_span
p_uniform_con = 1e15

p_well_x_center = 10.75
p_well_x_span = 22.5
p_well_y_center = 0
p_well_y_span = 15
p_well_z_center = -0.035
p_well_z_span = 0.53
p_well_junction_width = 0.05
p_well_con = 7e18

p_pplus_x_center = 10.75
p_pplus_x_span = 22.5
p_pplus_y_center = 4.75
p_pplus_y_span = 4.5
p_pplus_z_center = 0.1675
p_pplus_z_span = 0.115
p_pplus_junction_width = 0.2
p_pplus_con = 3e19

n_pplus_x_center = 10.75
n_pplus_x_span = 19.7
n_pplus_y_center = 0
n_pplus_y_span = 3
n_pplus_z_center = 0.72
n_pplus_z_span = 0.02
n_pplus_junction_width = 0.02
n_pplus_con = 1e20
n_pplus_ref = 1e16

These are parameters for doping setup, including doping box, concentration and the diffusion junction width.


[6]
# --- optical simulation boundary  ---
x_min = -43 # light direction
x_max = 21
x_mean = 0.5*(x_min+x_max)
x_span = x_max-x_min

y_min = -3.2 # lateral
y_max = 3.2
y_mean = 0.5*(y_min+y_max)
y_span = y_max-y_min

z_min = -0.5 # vertical
z_max = 1
z_mean = 0.5*(z_min+z_max)
z_span = z_max-z_min
# endregion

These are geometry parameters for the optical simulation region.


2.3 Define the function for creating a new project

A function is defined for creating a project, setting materials, modeling, doping, setting boundary conditions, etc., which can be called by other simulation script files.

[7]
class RunOptions(NamedTuple):
high_field: bool
index_preview: bool
run: bool
extract: bool

def create_project(project_name, run_options: RunOptions) -> Project:

2.3.1 Create a new project

Create a new simulation project.

[8]
    # region --- 1. Project ---
pj = mo.Project(name=project_name, location=run_mode)
# endregion
return pj

mo.Project() parameters:

  • name--Project name, which is also the folder name for the project files to be saved.
  • location--The location of the computing resources. The active device simulation only support the option of "local" currently, which means the simulation uses the local computing resources.

2.3.2 Set materials

[9]
def create_structures(pj: Project, run_options: RunOptions):
# region --- 2. Material ---
mt = pj.Material()

if run_options.high_field:
elec_Ge_properties["mobility"]["mun"]["high_field"]["model"]="canali"
elec_Ge_properties["mobility"]["mup"]["high_field"]["model"]="canali"

The pj.Material variable imported from VPD_material.py, storing the modified electronic parameters for Silicon and Germanium. The material_property is used to determine which type of material parameters to choose. For details of the physics model and electronic parameter settings, please refer to the appendix.


[10]
    mt.add_lib(name="mat_sio2", data=mo.OE_Material.SiO2, order=2)
mt.add_lib(name="mat_al", data=mo.OE_Material.Al, order=2, override={"work_function": 4.28})
mt.add_lib(name="mat_si", data=mo.OE_Material.Si, order=2, override=elec_Si_properties)
mt.add_lib(name="mat_ge", data=mo.OE_Material.Ge, order=2, override=elec_Ge_properties)
mt["mat_al"].set_optical_material(data=mo.Material.PEC)
mt["mat_si"].set_optical_material(data=mo.Material.Si_Palik)
mt["mat_ge"].set_optical_material(data=mo.Material.Ge_Palik)
# endregion

When adding materials, start by using the add_lib function to add electrical materials from the material library.

add_lib() parameters:

  • name--Custom material name
  • data--Material data, requiring one of the built-in materials in the electrical material library, namely mo.OE_Material
  • order--mesh_order of the material, default to be 2
  • override--Override the default electronic parameters by custom values. It's empty by default, which means default models and parameters are applied

Then, use the set_optical_material function to set the optical property for the material.

set_optical_material() parameters:

  • data--Optical material property,which can be one of the built-in materials in the optical material library mo.Material, or be from the custom optical material.

Example of using custom optical material properties

[11]
    mt.add_lib(name="mat_sio2", data=mo.OE_Material.SiO2, order=2)
mt["mat_sio2"].set_optical_material(data=mo.Material.SiO2_Palik)

Note:

  1. Although the electrical and optical material properties are bound together through a two-step setting, in reality, there is no inherent connection between them. For instance, it is possible to set both the electrical properties of SiO2 and the optical properties of Si for the same material. The simulation will not generate errors or warnings in such cases, so users need to determine by themselves whether the material settings align with physics.

  2. The FDTD simulation currently doesn't support metal materials. Therefore, the optical property of metal materials should be set to mo.Material.PEC and the material name should also be "pec".


2.3.3 Create structures

First, initialize an object of pj.Structure().

[12]

pj.Structure() parameters:

  • mesh_type--Type of mesh refinement for optical simulation
  • mesh_factor--The grading factor of non-uniform grid
  • background_material--Background material

[13]
# region --- 3. Structure ---
st = pj.Structure()

st.add_geometry(name="BOX", type="Rectangle", property={
"material": {"material": mt["mat_sio2"]},
"geometry": {"x": SiO2_x_center, "x_span": SiO2_x_span, "y": SiO2_y_center, "y_span": SiO2_y_span, "z_min": -SiO2_z_span/2, "z_max": SiO2_z_center}})

st.add_geometry(name="SOX", type="Rectangle", property={
"material": {"material": mt["mat_sio2"]},
"geometry": {"x": SiO2_x_center, "x_span": SiO2_x_span, "y": SiO2_y_center, "y_span": SiO2_y_span, "z_min": SiO2_z_center, "z_max": SiO2_z_span/2}})

st.add_geometry(name="Si_input", type="Rectangle", property={
"material": {"material": mt["mat_si"]},
"geometry": {"x": input_wg_x_center, "x_span": input_wg_length, "y": Si_y_center, "y_span": input_wg_width, "z": Si_z_span/2, "z_span": Si_z_span}})

st.add_geometry(name="Si_taper", type="LinearTrapezoid", property={
"material": {"material": mt["mat_si"]},
"geometry": {"control_points":
[{"x": -40, "y": -0.25},
{"x": -40, "y": 0.25},
{"x": 0, "y": 2},
{"x": 0, "y": -2}],
"z_min": 0, "z_max": 0.22, "x": 0, "y": 0}})

st.add_geometry(name="Si_base", type="Rectangle", property={
"material": {"material": mt["mat_si"]},
"geometry": {"x": Si_slab_x_center, "x_span": Si_slab_length, "y": Si_y_center, "y_span": Si_slab_width, "z": Si_z_span/2, "z_span": Si_z_span}})

st.add_geometry(name="Ge", type="Pyramid", property={
"material": {"material": mt["mat_ge"]},
"geometry": {"x": Ge_x_center, "x_span_bottom": Ge_x_span_bottom, "x_span_top": Ge_x_span_top,
"y": 0, "y_span_bottom": Ge_y_span_bottom, "y_span_top": Ge_y_span_top, "z": Ge_z_center, "z_span": Ge_z_span}})

st.add_geometry(name="Cathode", type="Pyramid", property={
"material": {"material": mt["mat_al"]},
"geometry": {"x": cathode_x_center, "x_span_bottom": cathode_x_span, "x_span_top": cathode_x_span,
"y": cathode_y_center, "y_span_bottom": cathode_y_span_bottom, "y_span_top": cathode_y_span_top,
"z": cathode_z_center, "z_span": cathode_z_span}})

st.add_geometry(name="Anode", type="Pyramid", property={
"material": {"material": mt["mat_al"]},
"geometry": {"x": anode_x_center, "x_span_bottom": anode_x_span, "x_span_top": anode_x_span,
"y": anode_y_center, "y_span_bottom": anode_y_span_bottom, "y_span_top": anode_y_span_top,
"z": anode_z_center, "z_span": anode_z_span}})
# endregion

add_geometry() parameters:

  • name--Structure name
  • type--Structure type
  • property--Other properties, listed below

Rectangle property list:

defaulttypenotes
geometry.x_spanfloatRestrained by condition: >0.
geometry.x_minfloat
geometry.x_maxfloat
geometry.y_spanfloatRestrained by condition: >0.
geometry.y_minfloat
geometry.y_maxfloat
geometry.xfloat
geometry.yfloat
geometry.zfloat
geometry.z_spanfloatRestrained by condition: >0.
geometry.z_minfloat
geometry.z_maxfloat
geometry.rotate_x0float
geometry.rotate_y0float
geometry.rotate_z0float
material.materialmaterial
material.mesh_orderintegerRestrained by condition: >=0.

LinearTrapezoid property list:

defaulttypenotes
geometry.point_1_xfloat
geometry.point_1_yfloat
geometry.point_2_xfloat
geometry.point_2_yfloat
geometry.point_3_xfloat
geometry.point_3_yfloat
geometry.point_4_xfloat
geometry.point_4_yfloat
geometry.xfloat
geometry.yfloat
geometry.zfloat
geometry.z_spanfloatRestrained by condition: >0.
geometry.z_minfloat
geometry.z_maxfloat
geometry.rotate_x0float
geometry.rotate_y0float
geometry.rotate_z0float
material.materialmaterial
material.mesh_orderintegerRestrained by condition: >=0.

Pyramid property list:

defaulttypenotes
geometry.x_span_bottomfloatRestrained by condition: >=0.
geometry.y_span_bottomfloatRestrained by condition: >=0.
geometry.x_span_topfloatRestrained by condition: >=0.
geometry.y_span_topfloatRestrained by condition: >=0.
geometry.theta_x0float
geometry.theta_y0float
geometry.xfloat
geometry.yfloat
geometry.zfloat
geometry.z_spanfloatRestrained by condition: >0.
geometry.z_minfloat
geometry.z_maxfloat
geometry.rotate_x0float
geometry.rotate_y0float
geometry.rotate_z0float
material.materialmaterial
material.mesh_orderintegerRestrained by condition: >=0.

Note:

  1. The mesh_order of a structure is default to be the mesh order of its material. And the default value will be overridden when the structure's mesh_order is set explicitly.
  2. The larger of the mesh_order of a structure, the higher of its priority. With mesh_order of two structures being the same, the structure created later has a higher priority than the one created earlier. When structures overlap, the one with higher priority overrides the one with lower priority.

2.3.4 Add doping

[14]
def add_ddm_settings(pj: Project, run_options: RunOptions):
mt = pj.Material()
st = pj.Structure()
# region --- 4. DDM:Doping ---
dp = pj.Doping()
dp.add(name="p_uniform", type="constant_doping", property={
"dopant": {"dopant_type": "p", "concentration": p_uniform_con},
"geometry": {"x": p_uniform_x_center, "x_span": p_uniform_x_span,
"y": p_uniform_y_center, "y_span": p_uniform_y_span,
"z": p_uniform_z_center, "z_span": p_uniform_z_span,
"applicable_regions": "all_regions",
},})

dp.add(name="p_well", type="diffusion_doping", property={
"dopant": {"dopant_type": "p", "concentration": p_well_con, "ref_concentration": 1e6,
"source_face": "upper_z", "diffusion_function":"gaussian","junction_width": p_well_junction_width,},
"geometry": {"x": p_well_x_center, "x_span": p_well_x_span,
"y": p_well_y_center, "y_span": p_well_y_span,
"z": p_well_z_center, "z_span": p_well_z_span,
"applicable_regions": "all_regions",
},})

pj.Doping() parameters:

  • name--Doping name
  • type--Doping type. Options are "n" or "p" for n-type, p-type doping respectively
  • property--Other properties

According to the selection of general.type, doping is divided into constant doping and gaussian doping. Detailed properties are listed below.


Doping property list:

defaulttypenotes
geometry.xfloat
geometry.x_spanfloat
geometry.yfloat
geometry.y_spanfloat
geometry.zfloat
geometry.z_spanfloat
geometry.rotate_xfloat
geometry.rotate_yfloat
geometry.rotate_zfloat
geometry.x_minfloat
geometry.x_maxfloat
geometry.y_minfloat
geometry.y_maxfloat
geometry.z_minfloat
geometry.z_maxfloat
general.typestrSelections are ['constant_doping', 'diffusion_doping']
general.concentrationfloat
general.source_facestrAvailable when type is 'diffusion_doping'
general.junction_widthfloatAvailable when type is 'diffusion_doping'
general.ref_concentrationfloatAvailable when type is 'diffusion_doping'
geometry.applicable_regions'all_regions'strSelections are ['all_regions', 'material', 'region']
geometry.material_listlistAvailable when geometry.applicable_regions is 'material'
geometry.solid_listlistAvailable when geometry.applicable_regions is 'region'

Description:

  • geometry--Set the geometry parameters of doping box

  • general--Set the distribution function, concentration and so on

    • type:
      • When it's set to "constant", only concentration is required
      • When it's set to "gaussian": concentration, ref_concentration, junction_width, source_face are required
    • concentration--Concentration in the non-diffusion area
    • ref_concentration--Concentration on the edge of diffusion area (edge of doping box)
    • junction_width--Diffusion junction width
    • source_face--The doping source face. Options are "lower_x", "lower_y", "lower_z", "upper_x", "upper_y" or "upper_z". "lower_x" means the source face is x=x_min. Similarly for the rest. There is no diffusion area on the edge of source face. As for the other edges, there is a diffusion area within the doping box.
  • applicable_regions--Set a list of regions or materials to be doped

    • geometry.applicable_regions:

      • When it's set to "all_regions"(by default),the doping is applied to all the (semiconductor) structures, restricted by the doping box

      • When it's set to "material", material_list is required, which means the doping is applied to the structures with one of the specified materials and restricted by the doping box

      • When it's set to "solid", solid_list is required, which means the doping is applied to the specified structures and restricted by the doping box


Examples for complete doping setting syntax

[15]
    dp.add(name="p_pplus", type="diffusion_doping", property={
"dopant": {"dopant_type": "p", "concentration": p_pplus_con, "ref_concentration": 1e6,
"source_face": "upper_z", "diffusion_function":"gaussian","junction_width": p_pplus_junction_width},
"geometry": {"x": p_pplus_x_center, "x_span": p_pplus_x_span,
"y": p_pplus_y_center, "y_span": p_pplus_y_span,
"z": p_pplus_z_center, "z_span": p_pplus_z_span,
"applicable_regions": "all_regions",
},})
dp.add(name="n_pplus", type="diffusion_doping", property={
"dopant": {"dopant_type": "n", "concentration": n_pplus_con, "ref_concentration": n_pplus_ref,
"source_face": "upper_z", "diffusion_function":"gaussian","junction_width": n_pplus_junction_width},
"geometry": {"x": n_pplus_x_center, "x_span": n_pplus_x_span,
"y": n_pplus_y_center, "y_span": n_pplus_y_span,
"z": n_pplus_z_center, "z_span": n_pplus_z_span,
"applicable_regions": "all_regions",
},})
# endregion

2.3.5 Add surface recombination

[16]
# region --- 5. DDM:Surface Recombination ---
bd = pj.BoundaryCondition()
bd.add(name="Cathode_Ge", type="surface_recombination", property={
"general": {"electron": {"s0": 1e7},
"hole": {"s0": 1e7}},
"geometry": {"surface_type": "solid_solid",
"solid_1": st["Cathode"],
"solid_2": st["Ge"],
}
})
bd.add(name="Anode_Si", type="surface_recombination", property={
"general": {"electron": {"s0": 1e7},
"hole": {"s0": 1e7}},
"geometry": {"surface_type": "solid_solid",
"solid_1": st["Anode"],
"solid_2": st["Si_base"],
}
})
bd.add(name="Ge_SiO2", type="surface_recombination", property={
"general": {"electron": {"s0": Ge_SiO2_recombination_velocity},
"hole": {"s0": Ge_SiO2_recombination_velocity}},
"geometry": {"surface_type": "solid_solid",
"solid_1": st["SOX"],
"solid_2": st["Ge"],
}
})
# endregion

parameters:

  • name--Custom name
  • property--Other properties

Surface recombination property list:

defaulttypenotes
surface_typesolid_solidstringSelections are ['solid_solid', 'material_material'].
general.hole.s00floatSurface recombination velocity of holes.
general.electron.s00float-Surface recombination velocity of electrons.
solid_1stringAvailable when surface_type is 'solid_solid'
solid_2stringAvailable when surface_type is 'solid_solid'
material_1materialAvailable when surface_type is 'material_material'
material_2materialAvailable when surface_type is 'material_material'

Description:

  • surface_type--Type of selection for the surface

    • When surface_type is "solid_solid", the surface is the interface between two structures
    • When surface_type is "material_material", the surface is the interface between two materials
  • hole.s0, electron.s0--Surface recombination velocity of holes and electrons.

  • solid_1, solid_2--Names of the two structures at the interface. They must be set explicitly when surface_type is "solid_solid"

  • material_1, material_2--The two materials at the interface. They must be set explicitly when surface_type is "material_material"


2.3.6 Set local mesh

set a rectangle region for local mesh of electrical simulation.

[19]
# region --- 6. DDM:Mesh ---
lm = pj.LocalMesh()

lm.add(name="EMesh_Ge", type="EMesh", property={
"general": {"mesh_size": 0.01},
"geometry": {"geometry_type": "solid", "solid": st["Ge"]}
})
lm.add(name="EMesh_Si", type="EMesh", property={
"general": {"mesh_size": 0.02},
"geometry": {"geometry_type": "solid", "solid": st["Si_base"]}
})
lm.add(name="Ge_Boundary", type="EMesh", property={
"general": {"mesh_size": 0.002},
"geometry": {"geometry_type": "solid_solid",
"solid_1": st["Ge"],
"solid_2": st["Ge"],
"growth_ratio": 2}
})

lm.add(name="Si_Boundary", type="EMesh", property={
"general": {"mesh_size": 0.002},
"geometry": {"geometry_type": "solid_solid",
"solid_1": st["Si_base"],
"solid_2": st["Si_base"],
"growth_ratio": 2}
})
# endregion

Parameters:

  • name--Custom name
  • property--Other properties

defaulttypenotes
general.mesh_size0.01floatThe minimum value of the local mesh region.
general.geometry_typedirectly definedstringSelections are ['directly defined', 'solid','solid_solid']
solid_solidstringNames of the two structures at the interface.
solid_1stringAvailable when geometry_type is 'solid_solid'
solid_2stringAvailable when geometry_type is 'solid_solid'

Local mesh of electrical simulation in rectangle region property list, when geometry_type is directly defined:

defaulttypenotes
xfloat
x_spanfloatRestrained by condition: >=0.
x_minfloat
x_maxfloat
yfloat
y_spanfloatRestrained by condition: >=0.
y_minfloat
y_maxfloat
zfloat
z_spanfloatRestrained by condition: >=0.
z_minfloat
z_maxfloat
mesh_sizefloatmax size of electrical simulation mesh

Note:

  1. When the simulation region is in the xy plane, only the parameters in the x, y direction are effective, and parameters in the z direction will be ignored. Similarly for the rest.

    # region --- 10. FDTD:Mesh ---
lm = pj.LocalMesh()
lm.add(name="Mesh_Ge", type="Mesh", property={
"general": {"dz": 0.02},
"geometry": {"x": -42, "x_span": 0, "y": 0, "y_span": 0, "z": 0.47, "z_span": 0.5}
})
lm.add(name="Mesh_Si", type="Mesh", property={
"general": {"dz": 0.025},
"geometry": {"x": -42, "x_span": 0, "y": 0, "y_span": 0, "z": 0.11, "z_span": 0.22}
})
# endregion

Mesh set the local mesh for optical simulation, parameters:

  • name--Custom name
  • property--Other properties

Optical local mesh property list:

defaulttypenotes
general.dxfloatRestrained by condition: >0.
general.dyfloatRestrained by condition: >0.
general.dzfloatRestrained by condition: >0.
geometry.xfloat
geometry.x_spanfloatRestrained by condition: >=0.
geometry.x_minfloat
geometry.x_maxfloat
geometry.yfloat
geometry.y_spanfloatRestrained by condition: >=0.
geometry.y_minfloat
geometry.y_maxfloat
geometry.zfloat
geometry.z_spanfloatRestrained by condition: >=0.
geometry.z_minfloat
geometry.z_maxfloat

Description:

  • geometry--Set the region of local mesh. When x_span doesn't vanish, the mesh setting will be applied to the range along the x axis. Similarly for the rest

  • general--Set the mesh size in the corresponding direction



2.3.7 Set waveform

[17]
def add_fdtd_settings(pj: Project, run_options: RunOptions):
waveform_name = f"wv{wavelength_center*1e3}"

# region --- 7. FDTD:Waveform ---
wv = pj.Waveform()
wv.add(name=waveform_name, type='gaussian_waveform',
property={'set': 'frequency_wavelength',
'set_frequency_wavelength': {
'range_type': 'wavelength',
'range_limit': 'center_span',
'wavelength_center': wavelength_center,
'wavelength_span': wavelength_span,
},
}
)
# endregion

pj.Waveform() parameters:

  • name--Name of the waveform
  • range_type-- Selections are frequency or wavelength
  • wavelength_center--Center of wavelength
  • wavelength_span--Span of wavelength

2.3.8 Set optical sources

[20]
    # region --- 8. FDTD:ModeSource ---
src = pj.Source()
if run_options.run:
src.add(name="source", type="mode_source",
property={"general": {"inject_axis": "x_axis", "direction": "forward",'amplitude': 1, 'phase': 0,
"waveform": {"waveform_id": wv[waveform_name]},
"mode_selection": "user_select",'mode_index': 0,'rotations': {'theta': 0, 'phi': 0, 'rotation_offset': 0}},
"geometry": {"x": x_min + 1, "x_span": 0, "y": y_mean, "y_span": y_span, "z": z_mean, "z_span": z_span},
"modal_analysis": {"mode_removal": {"threshold": 0.01}}})
# endregion

pj.Source() parameters:

  • name--Name of the source
  • type--Type of the source. It is mode source in this example
  • property--Other properties
  • inject_axis--Direction of the source. "x_axis" means light propagating along x axis and in the direction of increasing x coordinate. "x_axis" means the opposite direction. Similarly for the rest

Mode source property list:

defaulttypenotes
general.amplitude1.0float
general.phase0.0float
general.mode_selectionstringSelections are ['fundamental', 'fundamental_TE', 'fundamental_TM', 'fundamental_TE_and_TM', 'user_select', 'user_import'].
general.mode_index0integer
general.rotations.theta0float
general.searchmax_indexstringSelections are ['near_n', 'max_index'].
general.number_of_trial_modes20integer
general.waveform.waveform_id_selectany
bent_waveguide.bent_waveguidefalsebool
bent_waveguide.radius1float
bent_waveguide.orientation20float
bent_waveguide.locationsimulation_centerstringSelections are ['simulation_center'].
geometry.xfloat
geometry.x_spanfloatRestrained by condition: >=0.
geometry.x_minfloat
geometry.x_maxfloat
geometry.yfloat
geometry.y_spanfloatRestrained by condition: >=0.
geometry.y_minfloat
geometry.y_maxfloat
geometry.zfloat
geometry.z_spanfloatRestrained by condition: >=0.
geometry.z_minfloat
geometry.z_maxfloat

Description:

  • geometray--Set geometric parameters of optical source

  • bent_waveguide--Set parameters related to bent waveguide

  • general

    • mode_selection--Set the type of selection for the eigen mode. When it is "user_select", the mode of index in mode_index is selected
    • waveform--Set the waveform of the source
      • waveform_id_select--Set to be a specified waveform

2.3.9 Set monitors

[21]
    # region --- 9. FDTD:Monitor ---

mn = pj.Monitor()
mn.add(name="power_monitor", type="power_monitor",
property={"general": {"frequency_profile": {"wavelength_center": wavelength_center, "wavelength_span": 0.1, "frequency_points": 5, }, },
"geometry": {"monitor_type": "3d", "x": 10.75, "x_span": 20, "y": 0, "y_span": 4, "z": 0.47, "z_span": 0.5}})
mn.add(name="y=0", type="power_monitor",
property={"general": {"frequency_profile": {"wavelength_center": wavelength_center, "wavelength_span": 0.1, "frequency_points": 5, }, },
"geometry": {"monitor_type": "2d_y_normal", "x": 10.75, "x_span": 20, "y": 0, "y_span": 0, "z": 0.47, "z_span": 0.5}})
mn.add(name="z=0.47", type="power_monitor",
property={"general": {"frequency_profile": {"wavelength_center": wavelength_center, "wavelength_span": 0.1, "frequency_points": 5, }, },
"geometry": {"monitor_type": "2d_z_normal", "x": 10.75, "x_span": 20, "y": 0, "y_span": 4, "z": 0.47, "z_span": 0}})

# endregion

The monitor "Power Monitor" is of the 3D type, set to record the optical field profile in the "Ge" structure, which will be used to calculate the optical generation rate. The monitors "y=0" and "z=0.47" are both of the 2D type, set to visualize the optical field profile at the specified cross-sections.

mn.add() parameters:

  • name--Name of the monitor
  • type--Type of the monitor
  • property--Other properties

Power monitor property list:

defaulttypenotes
general.frequency_profile.sample_spacinguniformstringSelections are ['uniform'].
general.frequency_profile.use_wavelength_spacingtruebool
general.frequency_profile.spacing_typewavelengthstringSelections are ['wavelength', 'frequency'].
general.frequency_profile.wavelength_minfloat
general.frequency_profile.wavelength_maxfloat
general.frequency_profile.wavelength_centerfloat
general.frequency_profile.wavelength_spanfloat
general.frequency_profile.frequency_minfloat
general.frequency_profile.frequency_maxfloat
general.frequency_profile.frequency_centerfloat
general.frequency_profile.frequency_spanfloat
general.frequency_profile.frequency_pointsinteger
geometry.monitor_typestringSelections are ['point', 'linear_x', 'linear_y', 'linear_z', '2d_x_normal', '2d_y_normal', '2d_z_normal', '3d'].
geometry.xfloat
geometry.x_spanfloatRestrained by condition: >=0.
geometry.x_minfloat
geometry.x_maxfloat
geometry.yfloat
geometry.y_spanfloatRestrained by condition: >=0.
geometry.y_minfloat
geometry.y_maxfloat
geometry.zfloat
geometry.z_spanfloatRestrained by condition: >=0.
geometry.z_minfloat
geometry.z_maxfloat
advanced.sampling_frequency.min_sampling_per_cycle2integer

Description:

  • geometry--Set the geometric parameters of the monitor, including the dimension and the size

  • general--Set the frequency points of the monitor

    • frequency_profile:

      • use_wavelength_spacing--Default to be True. When it' True, the frequency points in sampled in wavelength, otherwise, in frequency.

      • spacing_type--Default to be "wavelength". When it's "wavelength", the frequency range is set in wavelength; When it's "frequency", the frequency range is set in frequency

      • frequency_points--Number of frequency points


3. Simulation


3.1 Dark current

This section performs the simulation of dark current in the VPD0A_Id.py script by invoking the pd_project function.


3.1.1 Import simulation toolkit

[26]
import sys

# encoding: utf-8

from maxoptics_sdk.helper import timed, with_path
import os
import time
from typing import NamedTuple
import sys
current_dir = os.path.dirname(__file__)
sys.path.extend([current_dir])
from VPD00_structure import *

All the variables and functions from VPD00_structure.py are imported.


3.1.2 Set general parameters

[27]
@timed
@with_path
def simulation(*, run_options: "RunOptions", **kwargs, ):
# region --- 0. General Parameter ---

vsource = "Cathode"
gnd = "Anode"

sweep_vstart = 0
sweep_vstop = 4
sweep_vstep = 0.5

path = kwargs["path"]
simu_name = "VPD0A_Id"
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
project_name = f"{simu_name}_local_{time_str}"
plot_path = f"{path}/plots/{project_name}/"
current_file_path = os.path.abspath(__file__)

# endregion

3.1.3 Create a new project

[28]
# region --- 1. Project ---
pj: Project = create_project(project_name, run_options)
# endregion
create_structures(pj, run_options)

mt = pj.Material()
st = pj.Structure()

3.1.4 Add the solver

[30]
 # region --- 2. Simulation ---
simu = pj.Simulation()
simu.add(name=simu_name, type="DDM", property={
"background_material": mt["mat_sio2"],
"general": {"solver_mode": "steady_state",
"norm_length": 20,
"temperature_dependence": "isothermal",
"temperature": 298.15,
},
"geometry": {"dimension": "2d_x_normal", "x": 10, "x_span": 0, "y_min": 0, "y_max": 3.7, "z_min": -0.15, "z_max": 1.25},
"mesh_settings": {"mesh_size": 0.06},
"advanced": {"non_linear_solver": "newton",
"linear_solver": "mumps",
"fermi_statistics": "disabled", # or "enabled"
"damping": "potential", # or "none"
"potential_update": 1.0,
"max_iterations": 15,
"relative_tolerance": 1e-5,
"tolerance_relax": 1e5,
"divergence_factor": 1e25
}
})

# endregion

Description:

The detailed property list of DDM solver can be found in the appendix.

  • geometry--Set the geometric parameters for the simulation region

    • dimension--It's set to 2d_x_normal, which means the simulation is in the yz plane
  • general:

    • norm_length--It's set to normal_length, which is 20, meaning that the size of the device in the third dimension is 20μm. That is to say its length in the x-direction is 20μm
    • solver_mode--It's set to "steady_state", which means a steady state simulation

3.1.5 Add electrodes

[29]


# region --- 3. Simulation Settings ---
add_ddm_settings(pj, run_options)

bd = pj.BoundaryCondition()

bd.add(name=vsource,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[vsource]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "range", "range_start": sweep_vstart, "range_stop": sweep_vstop, "range_step": sweep_vstep,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})
bd.add(name=gnd,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[gnd]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "single", "voltage": 0,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})

# endregion

pj.BoundaryCondition() parameters:

  • name--Name of the electrode
  • property--Other properties

The detailed property list of electrode can be found in the appendix. Here a range of voltage from 0V to 4V is applied to the electrode "cathode", and the step of the voltage is 0.5V.


3.1.6 Run the solver

[31]
    # region --- 4. Run ---
if run_options.run:
result_ddm = simu[simu_name].run(
# resources={"compute_resources": "gpu", "gpu_devices": [{"id": 0}]}
)
# endregion

result_device stores the information of the simulation result, which can be used to perform result extraction.


3.1.7 Extract the result

[32]
# --- Extract ---
# region --- 5. Extract ---
if run_options.extract:
export_options = {"export_csv": True,
"export_mat": True, "export_zbf": True}
slice_options = {f"v_{gnd.lower()}": 0.0}

result_ddm.extract(data="ddm:electrode", electrode_name=vsource, savepath=f"{plot_path}I_{vsource}",
target="line", attribute="I", plot_x=f"v_{vsource.lower()}", real=True, imag=False, log=False, show=False, **slice_options, export_csv=True
) # attribute = "I", "In", "Ip", "Id", "Vs"
# endregion


run_options.extract() parameters:

  • data--Type of the result. Here it's set to "I" to extract the I-V curve from the simulation result
  • electrode_name--Name of an electrode, which means the current data is from the electrode
  • export_csv--Whether to export the csv result
  • show--Whether to show the plot in a popup window
  • savepath--The save path for the result extraction

Result show of the dark current extraction

Dark Current

Fig 3. Dark Current

3.1.8 Print the simulation time

[33]
    return project_name
if __name__ == "__main__":
simulation(run_options=RunOptions(high_field=False, index_preview=False, run=True, extract=True))

3.2 Resistance

This simulation applies a forward bias to the electrode "anode". And then the I-V curve is extracted and fitted to obtain the resistance. The script is in the VPD0C_Rs.py file.


3.2.1 Simulate and extract the I-V curve

[34]
import sys

# encoding: utf-8

from maxoptics_sdk.helper import timed, with_path
import os
import time
import sys
current_dir = os.path.dirname(__file__)
sys.path.extend([current_dir])
from VPD00_structure import *


@timed
@with_path
def simulation(*, run_options: "RunOptions", **kwargs, ):
# region --- 0. General Parameter ---

vsource = "Anode"
gnd = "Cathode"

sweep_vstart = 0
sweep_vstop = 1.5
sweep_vstep = 0.25

path = kwargs["path"]
simu_name = "VPD0C_Rs"
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
project_name = f"{simu_name}_local_{time_str}"
plot_path = f"{path}/plots/{project_name}/"
current_file_path = os.path.abspath(__file__)

# endregion
# region --- 1. Project ---
pj: Project = create_project(project_name, run_options)
# endregion
create_structures(pj, run_options)

mt = pj.Material()
st = pj.Structure()


# region --- 2. Simulation ---
simu = pj.Simulation()
simu.add(name=simu_name, type="DDM", property={
"background_material": mt["mat_sio2"],
"general": {"solver_mode": "steady_state",
"norm_length": 20,
"temperature_dependence": "isothermal",
"temperature": 298.15,
},
"geometry": {"dimension": "2d_x_normal", "x": 10, "x_span": 0, "y_min": 0, "y_max": 3.7, "z_min": -0.15, "z_max": 1.25},
"mesh_settings": {"mesh_size": 0.06},
"advanced": {"non_linear_solver": "newton",
"linear_solver": "mumps",
"fermi_statistics": "disabled", # or "enabled"
"damping": "potential", # or "none"
"potential_update": 1.0,
"max_iterations": 15,
"relative_tolerance": 1e-5,
"tolerance_relax": 1e5,
"divergence_factor": 1e25
}
})

# endregion

# region --- 3. Electrode ---

add_ddm_settings(pj, run_options)

bd = pj.BoundaryCondition()

bd.add(name=vsource,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[vsource]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "range", "range_start": sweep_vstart, "range_stop": sweep_vstop, "range_step": sweep_vstep,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})
bd.add(name=gnd,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[gnd]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "single", "voltage": 0,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})

# endregion



# region --- 4. Run ---
if run_options.run:
result_ddm = simu[simu_name].run(
# resources={"compute_resources": "gpu", "gpu_devices": [{"id": 0}]}
)
# endregion


# region --- 5. Extract ---
if run_options.extract:
export_options = {"export_csv": True,
"export_mat": True, "export_zbf": True}
slice_options = {f"v_{gnd.lower()}": 0.0}

result_ddm.extract(data="ddm:electrode", electrode_name=vsource, savepath=f"{plot_path}I_{vsource}",
target="line", attribute="I", plot_x=f"v_{vsource.lower()}", real=True, imag=False, log=False, show=False, **slice_options, export_csv=True
) # attribute = "I", "In", "Ip", "Id", "Vs"
# endregion

A range of voltage from 0V to 1.5V is applied to the electrode "anode", with a step of 0.25V. No optical generation rate is applied. And a steady state simulation is performed to extract the I-V curve, which is saved to the folder IV_file_folder.


Result show of the I-V curve

I-V curve

Fig 4. I-V curve

3.2.2 Fit V-I curve to obtain resistance


3.2.2.1 Read the saved I-V data
[35]
# region --- calculate R ---
Vdc = np.genfromtxt(f"{plot_path}I_Anode.csv",skip_header=1,delimiter=",")[:,0]
Idc = np.genfromtxt(f"{plot_path}I_Anode.csv",skip_header=1,delimiter=",")[:,1]

"I_Anode.csv" is filename generated automatically of the I-V result.


3.2.2.2 Fit the data to obtain resistance
[36]
        start_idx = len(Vdc)//2
coeffs = np.polyfit(Idc[start_idx:], Vdc[start_idx:], 1)
V_fit = coeffs[0]*Idc + coeffs[1]
R = abs(coeffs[0])

Fit the data after the index start_idx, which is the start index of the approximately linear portion of the curve. A first-order polynomial fitting is performed on the V-I data. Then the coefficient of the first-order term is the device resistance.


3.2.2.3 Save data and plots
[37]
    r_path = f"{plot_path}resistance"
if not os.path.exists(r_path):
os.makedirs(r_path)

with open(f"{r_path}/Rdata.txt", "w") as fp:
fp.write("Resistance: " + f"{R} Ohm\n")
fontsize = 20
linewidth = 1
plt.rcParams.update({"font.size": fontsize})
fig, ax = plt.subplots()
fig.set_size_inches(12, 8)
ax.plot(Idc, Vdc, c="b", linewidth=linewidth, label="V-I")
ax.plot(Idc, V_fit, c="g", linewidth=linewidth, label="V_fit-I")
ax.set_xlabel("I[A]")
ax.set_ylabel("V[V]")
plt.legend()
plt.ticklabel_format(style="sci", scilimits=(-1, 2))
ax.grid()
plt.savefig(f"{plot_path}resistance/Rs.jpg")
plt.close()
# endregion

if __name__ == "__main__":
simulation(run_options=RunOptions(high_field=False, index_preview=False, run=True, extract=True))

Result show of the V-I fitting

resistance

Fig 5. V-I fitting

3.3 Capacitance

This section performs a SSAC simulation, and extracts the capacitance. The script is in the VPD0A_C.py file.

[38]
import sys

# encoding: utf-8

from maxoptics_sdk.helper import timed, with_path
import os
import time
import sys
current_dir = os.path.dirname(__file__)
sys.path.extend([current_dir])
from VPD00_structure import *


@timed
@with_path
def simulation(*, run_options: "RunOptions", **kwargs, ):
# region --- 0. General Parameter ---

vsource = "Cathode"
gnd = "Anode"

sweep_vstart = 0
sweep_vstop = 3
sweep_vstep = 0.5

path = kwargs["path"]
simu_name = "VPD0B_C"
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
project_name = f"{simu_name}_local_{time_str}"
plot_path = f"{path}/plots/{project_name}/"
current_file_path = os.path.abspath(__file__)

# endregion
# region --- 1. Project ---
pj: Project = create_project(project_name, run_options)
# endregion
create_structures(pj, run_options)

mt = pj.Material()
st = pj.Structure()


# region --- 2. Simulation ---
simu = pj.Simulation()
simu.add(name=simu_name, type="DDM", property={
"background_material": mt["mat_sio2"],
"general": {"solver_mode": "ssac",
"norm_length": 20,
"temperature_dependence": "isothermal",
"temperature": 298.15,
"perturbation_amplitude": 0.001, "frequency_spacing": "single", "frequency": 1e8
},
"geometry": {"dimension": "2d_x_normal", "x": 10, "x_span": 0, "y_min": 0, "y_max": 3.7, "z_min": -0.15, "z_max": 1.25},
"mesh_settings": {"mesh_size": 0.06},
"advanced": {"non_linear_solver": "newton",
"linear_solver": "mumps",
"fermi_statistics": "disabled", # or "enabled"
"damping": "potential", # or "none"
"potential_update": 1.0,
"max_iterations": 15,
"relative_tolerance": 1e-5,
"tolerance_relax": 1e5,
"divergence_factor": 1e25
}
})

# endregion

# region --- 3. Simulation Settings ---

add_ddm_settings(pj, run_options)

bd = pj.BoundaryCondition()

bd.add(name=vsource,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[vsource]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "range", "range_start": sweep_vstart, "range_stop": sweep_vstop, "range_step": sweep_vstep,
"apply_ac_small_signal": "all",
"envelop": "uniform",
}
})
bd.add(name=gnd,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[gnd]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "single", "voltage": 0,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})

# endregion



# region --- 4. Run ---
if run_options.run:
result_ddm = simu[simu_name].run(
# resources={"compute_resources": "gpu", "gpu_devices": [{"id": 0}]}
)
# endregion


# region --- 5. Extract ---
if run_options.extract:
export_options = {"export_csv": True,
"export_mat": True, "export_zbf": True}

result_ddm.extract(data="ddm:electrode_ac", electrode_name=vsource, savepath=f"{plot_path}C",
target="line", attribute="C", plot_x=f"v_{vsource.lower()}", real=True, imag=False, frequency=1e8, show=False, export_csv=True)
# endregion

return project_name

if __name__ == "__main__":
simulation(run_options=RunOptions(high_field=False, index_preview=False, run=True, extract=True))

Description:

For DDM solver, the detailed properties can be found in the appendix. Here:

  • general:

    • solver_mode--It's set to "SSAC", which means a SSAC simulation

      • frequency_spacing--It's set to "single", which means a single frequency point

      • frequency--Set the value of the single frequency


For the electrode "cathode", a range of voltage from 0V to 3V is applied to it, with a step of 0.5V.

  • apply_AC_small_signal--It's set to All, which means the small signal analysis is applied at each voltage step

For the result extraction:

  • data--It's set to "C", which is available after the SSAC simulation and is used to extract the capacitance

Result show of the capacitance

Capacitance

Fig 6. Capacitance

3.4 Optical generation rate

This section performs a FDTD simulation to obtain the optical field profile in the structure of "Ge", and then calculate the photo-induced carrier generation rate. The average of the optical generation rate in the light propagating direction, which is the x-direction, is then taken to obtain the profile in the yz plane to be imported to the DDM simulation. The script is in the VPD01_FDTD.py file.


3.4.1 Import simulation toolkit

[39]
import sys

# encoding: utf-8
from maxoptics_sdk.helper import timed, with_path
import os
import time
import sys
current_dir = os.path.dirname(__file__)
sys.path.extend([current_dir])

from VPD00_structure import *

3.4.2 Set general parameters

[40]
start = time.time()
time_str = time.strftime("%Y%m%d_%H%M%S/", time.localtime())

# ---------------------- set project_path
@timed
@with_path
def simulation(*, run_options: "RunOptions", **kwargs, ):
# region --- 0. General Parameter ---

path = kwargs["path"]
simu_name = "VPD01_FDTD"
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
project_name = f"{simu_name}_local_{time_str}"
plot_path = f"{path}/plots/{project_name}/"
current_file_path = os.path.abspath(__file__)

# endregion

3.4.3 Create a new project

[41]
    # region --- 1. Project ---
pj: Project = create_project(project_name, run_options)
# endregion

create_structures(pj, run_options)

mt = pj.Material()
st = pj.Structure()

3.4.4 Add the solver

[42]
   # region --- 2. Simulation ---
simu = pj.Simulation()
simu.add(name=simu_name, type="FDTD",
property={"background_material": mt["mat_sio2"],
"geometry": {"x": x_mean, "x_span": x_span, "y": y_mean, "y_span": y_span, "z": z_mean, "z_span": z_span, },
"general": {"simulation_time": 2000, },
"mesh_settings": {"mesh_factor": 1.2, "mesh_type": "auto_non_uniform",
"mesh_accuracy": {"cells_per_wavelength": 14},
"minimum_mesh_step_settings": {"min_mesh_step": 1e-4},
"mesh_refinement": {"mesh_refinement": "curve_mesh", }},
"boundary_conditions": {"x_min_bc": "PML", "x_max_bc": "PML", "y_min_bc": "PML", "y_max_bc": "PML", "z_min_bc": "PML", "z_max_bc": "PML",
"pml_settings": {"all_pml": {"profile":"standard","layer": 8, "kappa": 2, "sigma": 0.8, "polynomial": 3, "alpha": 0, "alpha_polynomial": 1, }}},
'advanced_options': {'auto_shutoff': {'auto_shutoff_min': 1.00e-4, 'down_sample_time': 200}},
})
# endregion
# region --- 3. Simulation Settings ---
add_fdtd_settings(pj, run_options)

mn = pj.Monitor()

# endregion

The FDTD solver for active device simulation can be used to extract the optical generation rate.


3.4.5 Run and extract the result

[43]
   # region --- 4. Run ---
if run_options.run:
result_fdtd = simu[simu_name].run(
# resources={"compute_resources": "gpu", "gpu_devices": [{"id": 0}]}
)

""" Analysis """
analysis = pj.Analysis()
analysis.add(name="generation_rate", type="generation_rate",
property={"power_monitor": "power_monitor", "average_dimension": "x", "light_power": 1, "workflow_id": result_fdtd.workflow_id})
gen_res = analysis["generation_rate"].run()
# endregion

# region --- 5. Extract ---
export_options = {"export_csv": True,
"export_mat": True, "export_zbf": True}
gen_res.extract(data="fdtd:generation_rate", savepath=f"{plot_path}genrate", generation_rate_name="generation_rate",
target="intensity", attribute="G", real=True, imag=False, **export_options, show=False)
gen_res.extract(data="fdtd:generation_rate", savepath=f"{plot_path}pabs_total", generation_rate_name="generation_rate",
target="line", attribute="Pabs_total", plot_x="frequency", real=True, imag=False, show=False, export_csv=True)
gen_res.extract(data="fdtd:generation_rate", savepath=f"{plot_path}jsc", generation_rate_name="generation_rate",
target="line", attribute="Jsc", plot_x="frequency", real=True, imag=False, show=False, export_csv=True)
# endregion

return project_name

if __name__ == "__main__":
simulation(run_options=RunOptions(high_field=False, index_preview=False, run=True, extract=True))

pj.analysis() parameters:

  • name--Custom name
  • monitor--Name of the power_monitor for calculating optical generation rate. The power_monitor is required to be of 3D type.
  • average_dimension--Set the direction to take the average of the optical generate rate.
  • light_power--Set the power of the light source, measured in W. The optical generation rate will be scaled based on the power.

gen_res.extract() parameters:

  • data--Type of the result

    • When data is set to "generation_rate", besides an image file and a csv file, the result files also include a text file in .gfile format. The coordinate unit in the csv and the image file is um, and the generation rate unit in the two files is /cm^3/s. These units can't be modified when extracting the result. And only the gfile can be imported to the DDM solver.
    • When data is set to "pabs_total", the total absorption power is extracted.
  • export_csv--Whether to export csv file

  • show--Whether to show the plot in a popup window


Result show of the optical generation rate

Optical generation rate

Fig 7. Optical generation rate

3.5 Photo current

This section imports the optical generation rate to the DDM solver, and performs a steady state simulation to obtain the photo current. The script is in the VPD02_Ip.py file.


3.5.1 Import simulation toolkit

[44]
import sys

# encoding: utf-8

from maxoptics_sdk.helper import timed, with_path
import os
import time
import sys
current_dir = os.path.dirname(__file__)
sys.path.extend([current_dir])
from VPD00_structure import *

3.5.2 Set general parameters

[45]
@timed
@with_path
def simulation(*, run_options: "RunOptions", **kwargs, ):
# region --- 0. General Parameter ---

vsource = "Cathode"
gnd = "Anode"

sweep_vstart = 0
sweep_vstop = 4
sweep_vstep = 0.5

path = kwargs["path"]
simu_name = "VPD02_Ip"
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
project_name = f"{simu_name}_local_{time_str}"
plot_path = f"{path}/plots/{project_name}/"
current_file_path = os.path.abspath(__file__)

gen_rate_file = os.path.join(os.path.dirname(__file__), "VPD01_FDTD.gfile")

# endregion

genrate_file_path is the absolute path of the gfile to be imported to the DDM solver. Here it's set to the absolute path of VPD01_FDTD.gfile in the same directory. And this can be changed to the path of the gfile extracted by the FDTD simulation.


3.5.3 Create a new project

[46]
    # region --- 1. Project ---
pj: Project = create_project(project_name, run_options)
# endregion
create_structures(pj, run_options)

mt = pj.Material()
st = pj.Structure()

3.5.4 Add the solver

[48]
   # region --- 2. Simulation ---
simu = pj.Simulation()
simu.add(name=simu_name, type="DDM", property={
"background_material": mt["mat_sio2"],
"general": {"solver_mode": "steady_state",
"norm_length": 20,
"temperature_dependence": "isothermal",
"temperature": 298.15,
},
"geometry": {"dimension": "2d_x_normal", "x": 10, "x_span": 0, "y_min": 0, "y_max": 3.7, "z_min": -0.15, "z_max": 1.25},
"mesh_settings": {"mesh_size": 0.06},
"advanced": {"non_linear_solver": "newton",
"linear_solver": "mumps",
"fermi_statistics": "disabled", # or "enabled"
"damping": "potential", # or "none"
"potential_update": 1.0,
"max_iterations": 15,
"relative_tolerance": 1e-5,
"tolerance_relax": 1e5,
"divergence_factor": 1e25
}
})

# endregion

# region --- 3. Simulation Settings ---
add_ddm_settings(pj, run_options)

ds = pj.DataSpace()

ds.import_data(name="gen", type="generation", property={
"path": gen_rate_file
})

src = pj.Source()
src.add(name="gen", type="optical_generation", property={
"general": {"generation_data": ds["gen"], "source_fraction": 0.001},
"transient": {"envelop": "uniform"}
})

Description:

  • add_ddm_settings:

    • import_data.path--Here it's not empty, meaning that the file at the path will be imported to the DDM solver

    • source_fraction--Set the scaling factor for the light power. The imported optical generation rate will be multiplied by this factor first, and then be used to solve the carrier transport


3.5.5 Add electrodes

[47]

bd = pj.BoundaryCondition()

bd.add(name=vsource,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[vsource]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "range", "range_start": sweep_vstart, "range_stop": sweep_vstop, "range_step": sweep_vstep,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})
bd.add(name=gnd,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[gnd]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "single", "voltage": 0,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})

# endregion

3.5.6 Run and extract the result

[49]
   # region --- 4. Run ---
if run_options.run:
result_ddm = simu[simu_name].run(
# resources={"compute_resources": "gpu", "gpu_devices": [{"id": 0}]}
)
# endregion


# region --- 5. Extract ---
if run_options.extract:
electrode_name = "cathode"
export_options = {"export_csv": True,
"export_mat": True, "export_zbf": True}
slice_options = {f"v_{gnd.lower()}": 0.0}

result_ddm.extract(data="ddm:electrode", electrode_name=vsource, savepath=f"{plot_path}I_{vsource}",
target="line", attribute="I", plot_x=f"v_{vsource.lower()}", real=True, imag=False, log=False, show=False, **slice_options, export_csv=True
) # attribute = "I", "In", "Ip", "Id", "Vs"
# endregion

return project_name

if __name__ == "__main__":
simulation(run_options=RunOptions(high_field=False, index_preview=False, run=True, extract=True))

Result show of the photo current

Photo current

Fig 8. Photo current

3.6 Bandwidth

This section performs a transient simulation to extract the step response of the photo current. Then the bandwidth is obtained by postprocessing the I-t curve. The script is in the VPD03_bw.py file.


3.6.1 Import simulation toolkit

[50]
import sys

# encoding: utf-8

from maxoptics_sdk.helper import timed, with_path
import os
import time
from typing import NamedTuple
import sys
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate as scip, fft as scfft

current_dir = os.path.dirname(__file__)
sys.path.extend([current_dir])
from VPD00_structure import *

3.6.2 Set general parameters

[51]
@timed
@with_path
def simulation(*, run_options: "RunOptions", **kwargs, ):
# region --- 0. General Parameter ---

path = kwargs["path"]
simu_name = "VPD03_bw"
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
project_name = f"{simu_name}_local_{time_str}"
plot_path = f"{path}/plots/{project_name}/"
current_file_path = os.path.abspath(__file__)

gen_rate_file = os.path.join(os.path.dirname(__file__), "VPD01_FDTD.gfile")

# endregion

3.6.3 Create a new project

[52]
 # region --- 1. Project ---
pj: Project = create_project(project_name, run_options)
# endregion
create_structures(pj, run_options)

mt = pj.Material()
st = pj.Structure()

3.6.4 Add the solver

[54]
   # region --- 2. Simulation ---
simu = pj.Simulation()
simu.add(name=simu_name, type="DDM", property={
"background_material": mt["mat_sio2"],
"general": {"solver_mode": "transient",
"norm_length": 20,
"temperature_dependence": "isothermal",
"temperature": 298.15,
},
"geometry": {"dimension": "2d_x_normal", "x": 10, "x_span": 0, "y_min": 0, "y_max": 3.7, "z_min": -0.15, "z_max": 1.25},
"mesh_settings": {"mesh_size": 0.06},
"advanced": {"non_linear_solver": "newton",
"linear_solver": "mumps",
"fermi_statistics": "disabled", # or "enabled"
"damping": "potential", # or "none"
"potential_update": 1.0,
"max_iterations": 15,
"relative_tolerance": 1e-5,
"tolerance_relax": 1e5,
"divergence_factor": 1e25
}
})

# endregion

# region --- 3. Simulation Settings ---
add_ddm_settings(pj, run_options)

ds = pj.DataSpace()

ds.import_data(name="gen", type="generation", property={
"path": gen_rate_file
})

src = pj.Source()
src.add(name="gen", type="optical_generation", property={
"general": {"generation_data": ds["gen"], "source_fraction": 0.001},
"transient": {"envelop": "pulse", "high_amplitude": 0.1, "low_amplitude": 0,
"time_delay": 2e-12, "rising_edge": 1e-13, "falling_edge": 1e-13, "pulse_width": 6e-10, "period": 1e-6}
})

Description:

  • general:

    • solver_mode--Here it's set to "transient", which means a transient simulation
  • advanced:

    • max_iterations--Set the max iterations during the initialization of solving the Poisson equations.
    • fermi_statistics--Whether to directly solve for the quasi-Fermi potential instead of carrier concentration as unkowns. "enabled" means True, and "disabled" means False
    • damping--Set the nonlinear update damping scheme. "potential" means the damping is based on the potential variation
    • potential_update--Set the threshold potential for potential damping. The large value will reduce the strength of damping effect
    • relative_tolerance--Set the relative update tolerance
    • tolerance_relax--Set the tolerance relaxation factor for convergence on relative tolerance criteria
    • source_fraction--When envelop is set touniform, this value is the scaling factor of the light power during the time range

3.6.4 Add electrodes

[53]
    bd = pj.BoundaryCondition()

bd.add(name="cathode",type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st["Cathode"]},
"general": {"electrode_mode": "transient",
"contact_type": "ohmic_contact",
"sweep_type": "range", "range_start": 0, "range_stop": 4, "range_step": 0.5,
"apply_ac_small_signal": "none",
"envelop": "uniform", "amplitude": 1, "time_delay": 0,
"transient_time_control": [
{"time_start": 0, "time_stop": 2e-12, "initial_step": 1e-12, "max_step": 5e-12},
{"time_start": 2e-12, "time_stop": 2.001e-12, "initial_step": 3e-17, "max_step": 3e-17},
{"time_start": 2.001e-12, "time_stop": 2.01e-12, "initial_step": 3e-17, "max_step": 6e-17},
{"time_start": 2.01e-12, "time_stop": 2.03e-12, "initial_step": 6e-17, "max_step": 2e-15},
{"time_start": 2.03e-12, "time_stop": 1e-11, "initial_step": 2e-15, "max_step": 5e-14},
{"time_start": 1e-11, "time_stop": 5e-10, "initial_step": 5e-14, "max_step": 1e-11},
]
}
})
bd.add(name="anode",type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st["Anode"]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "single", "voltage": 0,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})

# endregion

Description:

For the electrode "cathode":

  • electrode_mode--Here it's set to "transient", which means a transient boundary condition is applied to this electrode. Then the time dependence of the optical generation rate can be set at this electrode
  • range_stop--Here it's set to tcad_voltage, meaning that the voltage is applied to the electrode and a steady state simulation is performed first. The transient simulation is based on the steady state result. The optical generation rate is not applied during the steady state simulation.
  • range_step--Set the max step of the voltage from the equilibrium state to steady state at the bias of voltage.
  • transient_time_control--Set the time dependence of optical generation rate. It's of a list type, whose item is of a dictionary type. In each of its item:
    • time_start--Set the start time point of the range. The value of 0 represents the steady state of the earlier simulation.
    • time_stop--Set the stop time point of the range
    • initial_step--Set the initial time step of the range
    • max_step--Set the max time step of the range
    • optical--Set the optical generation rate during the time range
      • enabled--Whether to apply optical generation rate during the time range. The value of 1 means True, and 0 means False
      • envelop--The envelop of the scaling factor of the light power during the time range.

Note:

  1. The dependency of scaling factor of light power on time is a step function here.

3.6.6 Run the solver

[55]
    # region --- 4. Run ---
if run_options.run:
result_ddm = simu[simu_name].run(
# resources={"compute_resources": "gpu", "gpu_devices": [{"id": 0}]}
)
# endregion

3.6.7 Extract the result

The I-t curve is extracted. Because the dependency of the light power on time is a step function, the I-t curve here represents the step response of the photo current.

[56]
   # region --- 5. Extract ---
if run_options.extract:
electrode_name = "cathode"
export_options = {"export_csv": True,
"export_mat": True, "export_zbf": True}

result_ddm.extract(data="ddm:electrode", electrode_name=electrode_name, savepath=f"{plot_path}I",
target="line", attribute="I", plot_x="time", real=True, imag=False, log=False, show=False, export_csv=True
) # attribute = "I", "In", "Ip", "Id", "Vs"
# endregion

return project_name


if __name__ == "__main__":
simulation(run_options=RunOptions(high_field=True, index_preview=True, run=True, extract=True))

Result show of the step response

Step response

Fig 9. Step response

3.6.8 Postprocess

By taking the derivative of the step response, the impulse response is obtained. Then the Fast Fourier Transform is applied to the impulse response, resulting in the frequency response, which allows to determine the device bandwidth.


3.6.8.1 Obtain the impulse response
[57]
# region --- 6. Post Processing ---
I = np.genfromtxt(f"{plot_path}/I.csv", skip_header=1, delimiter=',')[:,1]
t = np.genfromtxt(f"{plot_path}/I.csv", skip_header=1, delimiter=',')[:,0]
start_idx = 0
for i ,val in enumerate(t):
if val == 2e-12:
start_idx = i
break

t = t[start_idx:]
I = I[start_idx:]

dt = np.diff(t)
dI = np.diff(I)
dIdt = (dI[1:] + (dt[1:]/dt[:-1])**2*dI[:-1])/(dt[1:]*(1+dt[1:]/dt[:-1]))
delta_t = 1e-13
th = t[1:len(t)-1]
nt = int(np.ceil((th[-1]-th[0])/delta_t))
t_interp = np.linspace(th[0], th[-1], nt)
interp1d_func = scip.interp1d(th, dIdt)
dIdt_interp = interp1d_func(t_interp)

First, take the derivative of the step response to obtain the impulse response. And then uniform time intervals and perform interpolation on the impulse response to facilitate the subsequent application of the Fast Fourier Transform.


3.6.8.2 Export the impulse response result
[58]
    # Output impulse response
bandwidth_folder = f"{plot_path}/3dB_bandwidth"
if not os.path.exists(bandwidth_folder):
os.makedirs(bandwidth_folder)
impulse_fig = os.path.join(bandwidth_folder, "impulse_response.jpg")
fontsize = 20
linewidth = 1
plt.rcParams.update({"font.size": fontsize})
fig, ax = plt.subplots()
fig.set_size_inches(12, 8)
ax.plot(t_interp*1e12, dIdt_interp/np.max(np.abs(dIdt_interp)), c='b', linewidth=linewidth, label="Impulse response")
ax.set_ylabel("Impulse response")
ax.set_xlabel("Time [ps]")
ax.grid()
plt.legend()
plt.ticklabel_format(style='sci', scilimits=(-1,2))
plt.savefig(impulse_fig)
plt.close()


Result show of the impulse response

Impulse response

Fig 10. Impulse response

3.6.8.3 Obtain the frequency response
[59]
    fresponse = scfft.rfft(dIdt_interp)
freq = scfft.rfftfreq(len(t_interp), t_interp[1]-t_interp[0])
fresponse = np.abs(fresponse)/np.max(np.abs(fresponse))

# Calculate 3dB bandwidth by interpolation
log_freq = np.log10(freq[1:])
log_fresp = 20*np.log10(np.abs(fresponse[1:]))
resp_3dB = -3

log_freq_3dB = scip.interp1d(log_fresp, log_freq)(resp_3dB)

bandwidth_GHz = 10**log_freq_3dB*1e-9

Obtain the frequency response by Fast Fourier Transform. And then calculate the 3dB bandwidth by interpolation.


3.6.8.4 Export the frequency response result
[60]
        bandwidth_file = os.path.join(bandwidth_folder, "3dB_bandwidth.txt")
bandwidth_fig = os.path.join(bandwidth_folder, "3dB_bandwidth.jpg")

with open(bandwidth_file, 'w') as fp:
fp.write("3dB bandwidth: " + f"{bandwidth_GHz:.6f} GHz\n")

fig, ax = plt.subplots()
fig.set_size_inches(12, 8)
ax.plot(freq[1:]*1e-9, 20*np.log10(np.abs(fresponse[1:])), 'b', linewidth=linewidth, label="Normalized response")
ax.plot(freq[1:]*1e-9, resp_3dB*np.ones(len(freq[1:])), 'g', linewidth=linewidth)
ax.set_xlim(left = 1, right = 300)
ax.set_ylim(bottom = -25)
ax.set_xscale('log')
ax.set_ylabel('Normalized response [dB]')
ax.set_xlabel('Frequency [GHz]')
ax.grid(which='both', axis='both')
plt.savefig(bandwidth_fig)

# endregion

if __name__ == "__main__":
simulation(run_options=RunOptions(high_field=True, index_preview=True, run=True, extract=True))


Result show of the frequency response

Frequency response

Fig 11. Frequency response

4. Appendix


4.1 Electronic parameters of the materials

The parameter settings in the VPD_material_Si.py file:

[71]
elec_Si_properties = {
"permittivity": {
"permittivity": 11.7,
},
"work_function":4.59,
"fundamental": {
"electron": "density_of_states",
"hole": "density_of_states",
"nc": {
# "constant": 3.21657e19,
"enable_model": True,
"nc300": 3.21657e19
},
"nv": {
# "constant": 1.82868e19,
"enable_model": True,
"nv300": 1.82868e19
},
"eg": {
# "constant": 1.12416,
"enable_model": True,
"alpha": 0.000473,
"beta": 636,
"eg0": 1.16
},
"narrowing": {
"model": "slotboom",
"slotboom": {
"e0": 0.0045,
"n0": 1.0e17
}
},
},
"recombination":{
"trap_assisted": {
"enabled": True,
"taun": {
"enable_model": True,
# "constant": 1e-5,
"alpha": -1.5,
"dopant": {
"model": "scharfetter",
"scharfetter": {
"nref": 7.1e15,
"taumax": 1.5e-9,
"taumin":0
}
},
"field": {
"model": "none",
# "schenk": {
# "hbar_omega": 0.068,
# "mt": 0.258,
# "s": 3.5
# }
}
},
"taup": {
"enable_model": True,
# "constant": 3e-6,
"alpha": -1.5,
"dopant": {
"model": "scharfetter",
"scharfetter": {
"nref": 7.1e15,
"taumax": 1.5e-9,
"taumin": 0
}
},
"field": {
"model": "none", # or "none"
# "schenk": {
# "hbar_omega": 0.068,
# "mt": 0.24,
# "s": 3.5
# }
}
},
"ei_offset": 0.0
},
"radiative": {
"enabled": True,
"copt": 1.6e-14
},
"auger": {
"enabled": True,
"caun": {
"constant": 2.8e-31,
"enable_model": False,
# "a": 6.7e-32,
# "b": 2.45e-31,
# "c": -2.2e-32,
# "h": 3.46667,
# "n0": 1e18
},
"caup": {
"constant": 9.9e-32,
"enable_model": False,
# "a": 7.2e-32,
# "b": 4.5e-33,
# "c": 2.63e-32,
# "h": 8.25688,
# "n0": 1e18
}
},
"band_to_band_tunneling": {
"enabled": False,
# "model": "hurkx", # or "schenk"
# "hurkx": {
# "agen": 3.5e21,
# "arec": 3.5e21,
# "bgen": 2.25e7,
# "brec": 2.25e7,
# "pgen": 2.0,
# "prec": 2.0,
# "alpha": 0
# },
# "schenk": {
# "a": 8.977e20,
# "b": 2.1466e7,
# "hbar_omega": 0.0186
# }
}

},
"mobility":{
"mun": {
"lattice": {
# "constant": 1417,
"enable_model": True,
"eta": -2.5,
"mumax": 1471
},
"impurity": {
"model": "masetti",
"masetti": {
"alpha": 0.68,
"beta": 2,
"cr": 9.68e16,
"cs": 3.43e20,
"mu1": 43.4,
"mumin1": 52.2,
"mumin2": 52.2,
"pc": 0
}
},
"high_field": {
"model": "none",
# "canali": {
# "alpha": 0,
# "beta0": 1.109,
# "eta": 0.66
# },
# "driving_field": {
# "model": "e_dot_j", # or "grad_phi",
# "grad_phi": {
# "nref": 1e5
# }
# },
# "vsat": {
# "constant": 1.07e7,
# "enable_model": False,
# "gamma": 0.87,
# "vsat0": 1.07e7
# }
}
},
"mup": {
"lattice": {
# "constant": 470.5,
"enable_model": True,
"eta": -2.2,
"mumax": 470.5
},
"impurity": {
"model": "masetti", # or "none"
"masetti": {
"alpha": 0.719,
"beta": 2,
"cr": 2.23e17,
"cs": 6.1e20,
"mu1": 29,
"mumin1": 44.9,
"mumin2": 44.9,
"pc": 0
}
},
"high_field": {
"model": "none",
# "canali": {
# "alpha": 0,
# "beta0": 1.213,
# "eta": 0.17
# },
# "driving_field": {
# "model": "e_dot_j", # or "grad_phi",
# "grad_phi": {
# "nref": 1e5
# }
# },
# "vsat": {
# "constant": 8.37e6,
# "enable_model": True,
# "gamma": 0.52,
# "vsat0": 8.37e6
# },
},
},
},
}

Description:

  • permittivity --Set the permittivity and affinity

  • fundamental--Set models and parameters of the band and the density of state

  • recombination--Set models and parameters of recombination of electron and hole

  • mobility--Set the model and parameters of mobility,

    • high_field--Set the switch of high field mobility model and Fermi-Dirac statistics model

    • vsat--Set the model and parameters of velocity saturation

For the detailed introduction about electronic parameters, please refer to the document examples/active_demo/Physics_Model_in_DDM.pdf.


4.2 DDM settings

DDM property list:

defaulttypenotes
general.norm_length1.0float
general.solver_modesteady_statestringSelections are ['steady_state', 'transient'].
general.temperature_dependenceIsothermalstringSelections are ['Isothermal'].
general.simulation_temperature300float
general.background_materialstring
advanced.non_linear_solverNewtonstringSelections are ['Newton'].
advanced.linear_solverMUMPSstring
advanced.fermi_statisticsdisabledstringSelections are ['disabled', 'enabled'].
advanced.dampingnonestringSelections are ['none', 'potential'].
advanced.potential_update1.0float
advanced.multi_threadslet_solver_choosestringSelections are ['let_solver_choose', 'set_thread_count'].
advanced.thread_count4integer
advanced.max_iterations15integer
advanced.relative_tolerance1.0e-5float
advanced.tolerance_relax1.0e+5float
advanced.divergence_factor1.0e+25float
advanced.saving on divergencedisabledstringSelections are ['disabled', 'enabled'].
genrate.genrate_pathstring
genrate.source_fractionfloat
genrate.coordinate_unitmstringSelections are ['m', 'cm', 'um', 'nm'].
genrate.field_length_unitmstringSelections are ['m', 'cm', 'um', 'nm'].
geometry.dimension2d_x_normalstringSelections are ['2d_x_normal', '2d_y_normal', '2d_z_normal'].
geometry.xfloat
geometry.x_spanfloat
geometry.x_minfloat
geometry.x_maxfloat
geometry.yfloat
geometry.y_spanfloat
geometry.y_minfloat
geometry.y_maxfloat
geometry.zfloat
geometry.z_spanfloat
geometry.z_minfloat
geometry.z_maxfloat
small_signal_ac.perturbation_amplitude0.001float
small_signal_ac.frequency_spacingsinglestringSelections are ['single', 'linear', 'log'].
small_signal_ac.frequency1.0e+6float
small_signal_ac.start_frequency1.0e+06float
small_signal_ac.stop_frequency1.0e+09float
small_signal_ac.frequency_interval9.9999e+10float
small_signal_ac.num_frequency_points2integer
small_signal_ac.log_start_frequency1.0e+06float
small_signal_ac.log_stop_frequency1.0e+10float
small_signal_ac.log_num_frequency_points2integer

Description:

  • geometry

    • dimension--Set the dimension of the simulation region. Only 2D simulation is supportd currently. When it's set to "2d_x_normal", the simulation is on the yz plane. Similarly for the rest
  • general:

    • norm_length--Set the length in the third dimension, default to be 1
    • solver_mode--Set the simulation mode. Steady state, transient and SSAC simulations are supported
    • temperature--Set the simulation temperature
    • temperature_dependence--Set the type of the temperature dependence. Only "Isothermal" is supported currently
  • small_signal_ac:

    • perturbation_amplitude--Set the voltage amplitude of the small signal

    • frequency_spacing--Set the spacing type of the frequency

      • When it's set to "single", the frequency point is single
      • When it's set to "linear", the frequency points are uniformly sampled
      • When it's set to "log",the frequency points are uniformly sampled base on the logarithm of frequency
    • frequency--Set the value of the single frequency

    • start_frequency--Set the start frequency of linear spacing

    • stop_frequency--Set the stop frequency of linear spacing

    • frequency_interval--Set the frequency interval of linear spacing

    • num_frequency_points--Set the number of frequency points of linear spacing

    • log_start_frequency--Set the start frequency of logarithmic spacing

    • log_stop_frequency--Set the stop frequency of logarithmic spacing

    • log_num_frequency_points--Set the number of frequency points of logarithmic spacing

  • advanced:

    • non_linear_solver--Set the non-linear solver, only Newton method is supported currently
    • linear_solver--Set the linear solver. Options are "MUMPS". MUMPS is direct linear solvers which usually give the exact solution, and supports parallel computation.
    • use_quasi_fermi--Whether to directly solve for the quasi-Fermi potential instead of carrier concentration as unkowns. "enabled" means True, and "disabled" means False
    • damping--Set the nonlinear update damping scheme. "potential" means the damping is based on the potential variation
    • potential_update--Set the threshold potential for potential damping. The large value will reduce the strength of damping effect
    • max_iterations--Set global maximum number of iterations, available when use_global_max_iterations is True
    • relative_tolerance--Set the relative update tolerance
    • tolerance_relax--Set the tolerance relaxation factor for convergence on relative tolerance criteria
    • divergence_factor--Nonlinear solver fault with divergence when each individual function norm exceeds the threshold as its absolute tolerance multiply by this factor

4.3 Electrode settings

Electrodes are added and set up through the add_electrode function. The format of the function is

[72]
 add_ddm_settings(pj, run_options)

bd = pj.BoundaryCondition()

bd.add(name,type="Electrode", property)

add_electrode() parameters:

  • name--Electrode name
  • property--Other properties

There are two different type of electrical boundary conditions, which are "steady_state"and "transient", specified by the property electrode_mode.


4.3.1 Steady state boundary condition

When the property electrode_mode is set to "steady_state", the steady state boundary condition is applied.

Property list of steady state boundary condition:

defaulttypenotes
contact_ohmictruebool
electrode_modesteady_statestringSelections are ['steady_state','transient'].
apply_AC_small_signalnonestringSelections are ['none', 'All'].
sweep_typesinglestringSelections are ['single', 'range'].
voltage0floatAvailable when sweep_type is 'single'
range_start0floatAvailable when sweep_type is 'range'
range_stop1floatAvailable when sweep_type is 'range'
range_step1floatAvailable when sweep_type is 'range'
surface_typesolidstringSelections are ['solid'].
solidstring

Description:

  • surface_type, solid, force_ohmic--The same as the one in steady state condition.
  • bc_mode--Set to "transient" for transient boundary condition. Then the time dependence of the optical generation rate can be set at this electrode.
  • voltage--Set the voltage that is applied to the electrode and a steady state simulation is performed first. The transient simulation is based on the steady state result. The optical generation rate is not applied during the steady state simulation.
  • v_step_max--Set the max step of the voltage from the equilibrium state to steady state at the bias of voltage.
  • time_table--Set the time dependence of optical generation rate. It's a list, whose item is a dictionary. In each of its item:
    • time_start--Set the start time point of the range. The value of 0 represents the steady state of the earlier simulation.
    • time_stop--Set the stop time point of the range
    • initial_step--Set the initial time step of the range
    • max_step--Set the max time step of the range
    • envelop--The envelop of the scaling factor of the light power during the time range. Selection are uniform or pulse.

Example for single voltage

[73]
    add_ddm_settings(pj, run_options)

bd = pj.BoundaryCondition()

bd.add(name=gnd,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[gnd]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "single", "voltage": 0,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})

Example for voltage range

[74]
    add_ddm_settings(pj, run_options)

bd = pj.BoundaryCondition()

bd.add(name=vsource,type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st[vsource]},
"general": {"electrode_mode": "steady_state",
"contact_type": "ohmic_contact",
"sweep_type": "range", "range_start": sweep_vstart, "range_stop": sweep_vstop, "range_step": sweep_vstep,
"apply_ac_small_signal": "none",
"envelop": "uniform",
}
})

4.3.2 Transient boundary condition

When the property electrode_mode is set to "transient", the transient boundary condition is applied.

Property list of transient boundary condition:

defaulttypenotes
force_ohmictruebool
electrode_modestringSelections are ['transient'].
voltage0float
[]time_table.time_startfloat
[]time_table.time_stopfloat
[]time_table.initial_stepfloat
[]time_table.max_stepfloat
surface_typesolidstringSelections are ['solid'].
solidstring

Description:

  • surface_type, solid, force_ohmic--The same as the one in steady state condition.
  • bc_mode--Set to "transient" for transient boundary condition. Then the time dependence of the optical generation rate can be set at this electrode.
  • voltage--Set the voltage that is applied to the electrode and a steady state simulation is performed first. The transient simulation is based on the steady state result. The optical generation rate is not applied during the steady state simulation.
  • v_step_max--Set the max step of the voltage from the equilibrium state to steady state at the bias of voltage.
  • time_table--Set the time dependence of optical generation rate. It's a list, whose item is a dictionary. In each of its item:
    • time_start--Set the start time point of the range. The value of 0 represents the steady state of the earlier simulation.
    • time_stop--Set the stop time point of the range
    • initial_step--Set the initial time step of the range
    • max_step--Set the max time step of the range
    • envelop--The envelop of the scaling factor of the light power during the time range. Selection are uniform or pulse.
  • uniform:
    • aplitude: This field sets the maximum amplitude of the mode source.
    • time Delay: Define the delay time before open the source.
  • pulse:
    • high amplitude: Maximum amplitude with the pulse turned on.
    • low amplitude: Minimum amplitude with the pulse turned off.
    • time delay: Define the delay time before open the source.
    • rising edge: The time of low amplitude rising to high amplitude.
    • falling edge: The time of high amplitude falling to low amplitude.
    • pulse width: The time of high amplitude duration.
    • period: The time of pulse duration, which should larger than rising edge、pulse width and falling edge.

Example for transient boundary condition

[76]
    bd = pj.BoundaryCondition()

bd.add(name="cathode",type="Electrode", property={
"geometry": {"surface_type": "solid", "solid": st["Cathode"]},
"general": {"electrode_mode": "transient",
"contact_type": "ohmic_contact",
"sweep_type": "range", "range_start": 0, "range_stop": 4, "range_step": 0.5,
"apply_ac_small_signal": "none",
"envelop": "uniform", "amplitude": 1, "time_delay": 0,
"transient_time_control": [
{"time_start": 0, "time_stop": 2e-12, "initial_step": 1e-12, "max_step": 5e-12},
{"time_start": 2e-12, "time_stop": 2.001e-12, "initial_step": 3e-17, "max_step": 3e-17},
{"time_start": 2.001e-12, "time_stop": 2.01e-12, "initial_step": 3e-17, "max_step": 6e-17},
{"time_start": 2.01e-12, "time_stop": 2.03e-12, "initial_step": 6e-17, "max_step": 2e-15},
{"time_start": 2.03e-12, "time_stop": 1e-11, "initial_step": 2e-15, "max_step": 5e-14},
{"time_start": 1e-11, "time_stop": 5e-10, "initial_step": 5e-14, "max_step": 1e-11},
]
}
})